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Abstract
The reverse Monte Carlo modelling technique is commonly applied for the
analysis of the atomic structure of liquid and amorphous substances. In
particular, partial structure factors of multi-component alloys can be determined
using this method. In the present study we use the example of the liquid
Ni33Ge67 alloy to investigate the impact of different input data on the result
of RMC modelling. It was found that even two experimental structure factors
might be sufficient to obtain reliable partial structure factors if the contrast
between them is high enough.

1. Introduction

Detailed description of a multi-component liquid or amorphous alloy requires the knowledge
of the partial structure factors and partial pair distribution functions. However, a conventional
diffraction experiment allows obtaining only the total structure factor. Applying the Faber–
Ziman formalism [1], the total structure factor in an alloy with K constituents can be expressed
as a weighted sum of the partial ones:

S(Q) =
K∑

i, j

wn
i j (Q)Si j(Q). (1)

The coefficients wi j depend on the composition of the sample and the scattering behaviour
of the components, which differs with the type n of diffraction experiment carried out. These
factors read

wX
i j (Q) = ci c j fi (Q) f j (Q)

〈 f (Q)〉2
, wN

i j = ci c j bcoh
i bcoh

j

〈bcoh〉2
(2)
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Table 1. Coefficients relating the partial structure factors to the total ones as given by (2).

58Ni33Ge67
60Ni33Ge67

∗Ni33Ge67

wn
NiNi 0.216 0.056 0.146

2wn
NiGe 0.497 0.327 0.473

wn
GeGe 0.287 0.617 0.381

for x-ray (superscript X) and neutron (N) diffraction experiments, respectively. Herein ci

denotes the molar fraction of component i , f (Q) the Q-dependent atomic form factor in case
of x-ray scattering, bcoh

i the coherent scattering length for neutron diffraction and

〈 f (Q)〉 =
K∑

i

ci fi (Q), 〈bcoh〉 =
K∑

i

ci b
coh
i . (3)

Generally speaking, (1) can be solved with respect to the Si j (Q) if K (K + 1)/2
experimental diffraction curves are at hand. There exist a number of experimental techniques
to determine the partial structure factors of binary alloys, e.g. diffraction experiments using
different radiations [2], neutron scattering with isotopic substitution (NDIS) [3, 4] or the
anomalous x-ray scattering method (AXS) [5]. All these methods have proved to be powerful
techniques. Nevertheless, their application is often limited by low availability, high costs or
insufficient accuracy.

Approximative approaches have been developed, such as assuming partial structure factors
which are independent of the concentration (e.g. [6]). By means of computer modelling
techniques, especially the reverse Monte Carlo method [7], partial distribution functions can
be derived from less than K (K + 1)/2 diffraction experiments. This technique is frequently
applied for modelling a large variety of materials. In particular, diffraction data for amorphous
and liquid alloys have been evaluated by RMC calculations. Recently, data from EXAFS-
experiments have been included successfully [8]. However, the question arises whether this
approach leads to accurate results.

In this work we aim to demonstrate that the reverse Monte Carlo modelling technique
(RMC) in certain cases allows the determination of reliable partial structure factors for a binary
alloy from only two independent measurements. For this purpose we chose the example of the
liquid Ni33Ge67 alloy. For this particular alloy, NDIS data are available [4]. This provides an
unique possibility to elucidate how different input data affects the result of the RMC modelling.

2. Experimental details

Total structure factors of the eutectic Ni33Ge67 alloy at a temperature of 780 ◦C have been
measured by neutron diffraction with isotopic substitution by Halm and co-workers [4]. Alloys
with 58Ni (bcoh

Ni = 14.4 fm), the natural isotopic mixture (in the following denoted as ∗Ni,
bcoh

Ni = 10.3 fm) as well as a mixture of ∗Ni and 60Ni (for simplicity denoted as 60Ni,
bcoh

Ni = 5 fm) have been measured at diffractometer 7C2 of the Léon Brillouin laboratory (LLB),
Saclay. The experimental details as well as the data treatment are described in [4] and the total
structure factors are shown in figure 1.

For each of the three experimental total structure factors the coefficients defined by (2)
are listed in table 1. By applying (1) the partial structure factors shown in figure 2 have been
calculated. Please note that no smoothing has been applied. In the following discussion, we
will assume that these partial structure factors are the correct ones and thus use them to examine
the results of the RMC modelling.
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Figure 1. Experimental total structure factors of the Ni33Ge67 alloy obtained by neutron diffraction
with isotopic subsitution [4].
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Figure 2. Partial structure factors Si j (Q) obtained from the experimental structure factors by
solving (1).

3. Reverse Monte Carlo modelling

The reverse Monte Carlo modelling technique, which was described first by McGreevy and
Pusztai in 1988 [7], is a modification of the conventional Metropolis Monte Carlo algorithm.
An actual survey and discussion with a broad variety of examples is to be found in [9].

Instead of pair potential total structure factors, total pair correlation functions or EXAFS
experimental data are used to obtain a three-dimensional atomic configuration describing
the system under investigation. Furthermore, constraints can be imposed on the atomic
configuration. In general, the average number density ρ0 (which determines the configuration
size for a given number of particles) and distances of closest approach of atoms are fixed. In
addition a certain coordination behaviour of the constituents can be assumed.

To start with, an initial atomic configuration can be created either from random positioning
of the atoms, from a known crystalline structure or from a hard-core model. The partial
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pair correlation functions in this configuration are determined from the averaged number of
neighbouring atoms ni j(r) in a certain interval �r of the radial distance r from the centre
atom:

gi j,RMC(r) =
〈
ni j(r)

〉

4πρ0r 2 · �r
. (4)

The gi j(r) are then Fourier transformed to Q-space to obtain partial structure factors. By
applying (1) and (2) the total structure factors corresponding to the given experimental ones are
calculated. The deviation between each set of the model total structure factor SRMC(Q) and the
experimental total structure factor S(Q) is given by

χ2 = 1

σ 2

∑

i

[SRMC(Qi ) − S(Qi )]
2. (5)

For a number of data-sets the individual values of χ2 have to be added to obtain a measure
for the overall deviation.

In the next step an atom to be moved is chosen randomly. This atom is shifted by a random
vector applying periodic boundary conditions. The total structure factors of the changed
configuration are then obtained as described above and another figure of merit χ̂2 is calculated.
If χ2 > χ̂2 the changed configuration substitutes the old one. In the opposite case, the new
configuration is used for further modelling only with a probability

P ∼ exp

[
− χ̂2 − χ2

σ 2

]
. (6)

Continuous application of this algorithm yields a good agreement between the
experimental and the model structure factors and χ2 will start to oscillate around a certain value.
However, by accepting a number of moves which do increase the value of χ2 the algorithm
reduces the probability that the algorithm will be caught in local minima.

The parameter σ can be regarded as a measure of the experimental error inherent in the
given total structure factors. By comparing (6) to the case of conventional Metropolis Monte
Carlo simulations it becomes obvious that σ plays the role of a numerical temperature. It can
thus be used to improve the agreement between experiment and model by annealing the atomic
configuration (this procedure is often referred to as ‘simulated annealing’).

In our study, reverse Monte Carlo modelling has been performed with (a) all three
experimental structure factors given in section 2, only either (b) the 60Ni33Ge67 or (c) the
58Ni33Ge67 structure factor combined with the ∗Ni33Ge67 total experimental structure factor and
(d) the ∗Ni33Ge67 neutron scattering structure factor only. For all RMC runs ρ0 = 0.049 Å

−3

and rmin,Ni–Ni = rmin,Ni–Ge = rmin,Ge–Ge = 1.8 Å but no coordination constraints have been
applied.

All RMC runs have been performed in three steps. First, a random configuration of 500
atoms has been prepared. The modelling process has been started with σ = 0.025, which has
been decreased stepwise to σ = 0.010 whenever χ2 was oscillating around a certain value,
which is a sign of an equilibrium state. Then the size of the simulation box has been doubled
in each direction, thus a configuration of 4000 atoms was at hand. With this arrangement of
atoms σ has been further decreased to a value of σ = 0.003. Finally, the simulation box has
again been doubled in each direction and contained 32 000 atoms. The modelling process has
been continued to reach σ = 0.001.

For all RMC simulations a very good agreement between model structure factor and
experimental structure factor has been achieved. As an example, this is illustrated for the
case of the RMC run with three experimental structure factors (case (a)) in figure 3. The
computed partial structure factors are shown in figure 4 in comparison with the ones determined
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Figure 3. Comparison between model for case (a) (solid lines) and experimental (dashed lines) total
structure factors. Note the good agreement between the experiment and RMC result (the difference
has been scaled up by a factor of five).
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Figure 4. Partial structure factors obtained using different input data: application of (1) and RMC
runs with (a) 58Ni33Ge67, 60Ni33Ge67, ∗Ni33Ge67, (b) 60Ni33Ge67, ∗Ni33Ge67, (c) 58Ni33Ge67,
∗Ni33Ge67, and (d) only ∗Ni33Ge67 total structure factor used.

by application of (1). No smoothing procedure has been applied to these partial structure
factors. Instead, modelling of sufficiently large atomic configurations yields a good statistics
in determining the partial pair correlation functions and thus smooth Fourier transformed
functions. Furthermore, the cut-off value is then high enough to avoid truncation effects in
the Fourier transformation.
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Table 2. Figure of merit R judging the relative information content of the different sets of total
structure factors used for the RMC modelling and deviation coefficient � describing the agreement
between the RMC model and solving (1).

Used structure factors R �

(a) 58Ni33Ge67, 60Ni33Ge67 and ∗Ni33Ge67 0.47 0.030
(b) 60Ni33Ge67 and ∗Ni33Ge67 0.42 0.033
(c) 58Ni33Ge67 and ∗Ni33Ge67 0.37 0.039
(d) ∗Ni33Ge67 0.33 0.056
— ∗Ni33Ge67, x-ray 0.38 —

4. Discussion

It is obvious that a different amount of information on the partial structure factors is inherent
in each of the data-sets used. McGreevy and Pusztai proposed a figure of merit R for assessing
the relative information content of different sets of total structure factors as follows [10]. For a
particular total structure factor the coefficients wn

i j given by (2) form a K (K + 1)/2 component

vector Cn , the unit vector being Ĉn . The difference in information between the total structure
factors from two experiments α and β is then represented by the angle

φαβ = arccos
(

Ĉα · Ĉβ
)

(7)

between the unit vectors corresponding to the experiments. A third total structure factor is
taken into account by calculating the angle φ(αβ)γ between the plane given by Ĉα and Ĉβ and
the remaining vector Ĉγ . With the arbitrary choice φα = π/2 for the first measurement, the
relative information content is the maximum value of

R = φα + φαβ + φ(αβ)γ

3π/2
(8)

for all possible permutations of the experimental structure factors. If x-ray structure factors
are taken into account this orthogonality parameter is Q dependent. However, the changes
in R over the whole Q-range are small compared to the differences between several sets of
experimental data. The values of R for the cases under discussion as well as a combination of x-
ray structure factor and neutron structure factor obtained from the natural isotopic composition
(calculated for Q = 0 Å

−1
) are given in table 2.

The shape as well as peak-heights of the partial structure factors depend strongly on the
information provided for the modelling process. In particular, in the case of SGeGe(Q) the
differences become prominent. Solving (1) gives the main peak position at Q1 = 2.45 Å

−1
and

there is a shoulder on the right-hand side. The result of the RMC run with the same input data
is a split peak but at the right position. Less information results in completely different peak
shapes and positions. However, the peak positions of the other partial structure factors remain
practically unchanged when changing the information provided for the modelling process.

In order to quantify the deviations between the ‘correct’ and the modelled partial structure
factors the value

� := 1

3Z

∑

i, j�i

Z∑

k

[
Si j,RMC(Qk) − Si j,Eq.(1)(Qk)

]2
, (9)

with the number Z of data points available, has been calculated for the results of all RMC runs
(see table 2). The dependence �(R) can be described approximately as an exponential law. This
emphasizes that data-sets with high R-values indeed allow the determination of reliable partial
structure factors even if fewer than K (K + 1)/2 experimental S(Q) are provided (compare
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data-sets (a) and (b)). On the other hand, the same number of total structure factors with less
relative information provided to the modelling process yields huge uncertainties in the obtained
partial structure factors.

In this study we compare the results of RMC modelling to partial structure factors obtained
by a direct inversion of (1). However, in an early work Edwards et al [11] showed that within
this procedure small experimental errors in the total structure factors might be scaled up to huge
errors in the partial structure factors and proposed an iterative procedure for the treatment of
NDIS data. Throughout the present discussion we should therefore keep in mind that even the
partial structure factors which we assumed to be the correct ones are affected by experimental
errors.

As Soper pointed out recently [12], any computer modelling approach implicitly imposes
constraints on the partial pair correlation function and thus also on the partial structure factors:
the gi j(r) are obtained from a three-dimensional arrangement of atoms at the given density.
In contrast to the direct inversion approach, this makes sure that the site–site pair distribution
functions are non-negative over the whole r -range and atomic overlap does not occur.

5. Conclusions

In the present study we used the example of the liquid Ni33Ge67 alloy to perform reverse Monte
Carlo calculations providing different input data with different relative information inherent in
them. It can be stated that reliable partial structure factors can be determined even from two
diffraction experiments if the contrast between these two experimental structure factors is high
enough (see data-set (b)). The figure of merit R as proposed by McGreevy and Pusztai proved
to be a useful measure for the relative information content of the sets of experimental structure
factors at hand. For the practical application this means that partial structure factors can be
obtained by combining one experimental structure factor obtained by x-ray diffraction and one
experimental structure factor obtained with neutron diffraction with natural isotopic mixtures
of the elements by means of the RMC technique if only the value of R is sufficiently high.

Application of constraints, e.g. the known coordination behaviour of certain components
in the material under investigation, may have a strong impact on the result of RMC simulations.
However, it has to be stressed that reliable information of this kind is scarce in most cases and
thus constraints have to be used with great care in order to obtain unbiased results.

The above discussion restricts the determination of partial structure factors as the
comparison between modelled structure and experimental data is done in terms of structure
factors. However, the initial result of the RMC modelling is a three-dimensional atomic
model of the material under investigation which reproduces the given experimental total
structure factors. This model can be further analysed, e.g. in terms of pair correlation
functions, coordination numbers, the distribution of atoms in the coordination shells, bond-
angle distribution and other methods.
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